Atlas



Challenges in Integrating Data-based Digital Twins in Process Industry image

Challenges in Integrating Data-based Digital Twins in Process Industry

Manufacturer: Software Competence Center Hagenberg GmbH

Industry: Manufacturing

Type: Process Twin

Integration: Digital Twin

Sophistication: Predictive Twin

Recent advances in sensor and edge data processing systems have created new opportunities for the creation of accurate digital representations (or digital twins) of physical processes (e.g., manufacturing processes). At the same time, the induced modeling tasks have grown in scale and computational needs, e.g., going from small scale control system technologies applied on a single machine or a single process step to modeling and supervising complete industrial process lines. Naturally, and due to the recent successes of deep-learning and neural networks, data-based modeling techniques and predictive data analytics have drawn significant attention as an alternative to physics-based modeling techniques. However, the implementation, integration and acceptance of data-based methods brings up several new challenges, namely a) integrating systems of different nature and modeling granularity, b) integrating expert/domain knowledge, c) handling unforeseen or new scenarios and operating conditions and d) the need for human-machine interaction. In this presentation, we will review some of the most prominent challenges in the implementation of data-based modeling techniques for predictive data analytics and optimization in process industry and discuss current practices for tackling them. The presentation of these challenges will be organized in three thematic areas, namely a) virtual sensors, b) industrial reactive optimization, and c) hierarchical predictive modeling and optimization.

The implementation of data-based predictive analytics and digital twins faces challenges with respect to a) domain generalization (i.e., the ability of the model to perform equally well in different scenarios and operating conditions), b) complexity in decision support and reaction speed, c) human-machine interaction and explainability. In this presentation, we will discuss these challenges in the context of real-world industrial use-cases and discuss some of the current practices for tackling them. The presentation of these challenges will be organized in three thematic areas, namely a) virtual sensors, b) industrial reactive optimization, and c) hierarchical predictive modeling and optimization.

Virtual Sensors

In recent years, sensor and edge processing technologies allow for almost real-time monitoring of complex industrial processes. However, there might still be phenomena and process details that cannot accurately be monitored and regulated without including a form of prediction or simulation of the process evolution. An example is demonstrated in Figure 1 of the metal bending process. A set of sensors can monitor the process, however the operator requires a simulation of the upcoming evolution of the process in order to proactively regulate the applied force and achieve the desired final angle. The problem becomes even more challenging when we consider the case of different types of material and different scenarios (e.g., machine tools and configurations). We will present a framework for combining physical-based modeling techniques with machine-learning techniques in order to improve the prediction accuracy of the process evolution. Furthermore, we will present a methodology for domain generalization into multiple scenarios.

Figure 1. Metal bending process and comparison between physics-based modeling and hybrid modeling.


Industrial Reactive Optimization

Industrial processes could be highly complex due to the increased variability in the input and configuration parameters as well as the influence of unpredictable exogenous factors. In certain cases operators need to continuously monitor the sensor data and react within a few seconds by re-configuring the process parameters. Although operators might be quite experienced in regulating the process, often support is required from sensors, predictive models and digital twins to allow for more informative and quick decisions. In this part of the presentation, we discuss challenges and best practices in establishing a data processing pipeline for providing near real-time suggestions to the operator.

Figure 2. Big Data Management and Monitoring of a Lime Calcination Process.


Hierarchical Predictive Modeling and Optimization

The traditional paradigm of a digital twin usually considers specific parts of the process or process steps. When there is a need for simulating, monitoring or predicting complex processes of possibly heterogeneous systems or multiple process steps, several new challenges emerge. Specifically, monitoring of the overall process by the operators becomes a great challenge given the potentially large amount of sensor data from different parts of the process, and the lack of better and more human-readable interpretation of the process operating conditions. In this part of the presentation, we present some techniques for providing a more human interpretable and understandable monitoring of the process through causal inference modeling techniques.


Figure 3. Generalized Hidden Markov Models for supervisory process analysis.

<p style="margin:0in;line-height:85%"> </p> <p style="margin:0in;line-height:85%"><b><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:black;mso-themecolor:text1;background: white">Virtual Sensors</span></b></p> <p style="margin:0in;line-height:85%"><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt">&nbsp;</span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l0 level1 lfo1"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;mso-ligatures:none">T. Grubinger, G. Chasparis, and T. Natschläger, “</span><span style="font-size: 10.0pt;line-height:85%;font-family:Roboto;color:#2E74B5;mso-themecolor:accent5; mso-themeshade:191;mso-ligatures:none"><a href="https://www.digital-twin-atlas.com/knowledge-hub/article/8/10.1016/j.enbuild.2016.12.074"><span style="color:#2E74B5;mso-themecolor:accent5;mso-themeshade:191">Generalized online transfer learning for climate control in residential buildings</span></a></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;mso-ligatures:none">,” <i>Energy and Buildings</i>, vol. 139, pp. 63–71, Mar. 2017.</span><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt"></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l0 level1 lfo1"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt">W. Zellinger, T. Grubinger, M. Zwick, "</span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-bidi-font-family: Arial;color:#2E74B5;mso-themecolor:accent5;mso-themeshade:191;letter-spacing: -.1pt"><a href="https://doi.org/10.1007/s10845-019-01499-4"><span style="color:#2E74B5;mso-themecolor:accent5;mso-themeshade:191">Multi-source transfer learning of time series in cyclical manufacturing</span></a></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-bidi-font-family: Arial;color:black;mso-themecolor:text1;letter-spacing:-.1pt">," <i>J Intell Manuf </i>31, pp. 777-787, 2020.</span><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;; mso-fareast-theme-font:minor-fareast;mso-bidi-font-family:Arial;color:black; mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning:12.0pt"></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l0 level1 lfo1"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;mso-ligatures:none">S. Luftensteiner and M. Zwick, “</span><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;color:#2E74B5;mso-themecolor:accent5;mso-themeshade: 191;mso-ligatures:none"><a href="http://www.thinkmind.org/index.php?view=article&amp;articleid=dbkda_2021_1_60_50033"><span style="color:#2E74B5;mso-themecolor:accent5;mso-themeshade:191">A Framework for Improving Offline Learning Models with Online Data</span></a></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;mso-ligatures:none">,” presented at the <i>DBKDA 2021, The Thirteenth International Conference on Advances in Databases, Knowledge, and Data Applications</i>, May 2021, pp. 32–37. </span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-fareast-font-family: &quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast;mso-bidi-font-family: Arial;color:black;mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning: 12.0pt"></span></p> <span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;mso-ligatures:none"></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-fareast-font-family: &quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast;mso-bidi-font-family: Arial;color:black;mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning: 12.0pt"></span> <p style="margin:0in;line-height:85%"><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-bidi-font-family:Arial;color:black;mso-themecolor: text1"><br></span></p> <p style="margin:0in;line-height:85%"><b><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;mso-bidi-font-family:Arial;color:black; mso-themecolor:text1">Industrial Reactive Optimization</span></b></p> <p style="margin:0in;line-height:85%"><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-bidi-font-family:Arial;color:black;mso-themecolor: text1">&nbsp;</span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l0 level1 lfo1"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;background:white">S. Luftensteiner, M. Mayr, <strong><span style="font-family:Roboto;font-weight: normal">G. Chasparis</span></strong><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">, M. Pichler, “</span></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:#0070C0"><a href="https://doi.org/10.3389/fceng.2021.665545" style="box-sizing: border-box; transition: color 0.1s ease-in-out 0s, background-color 0.1s ease-in-out 0s; font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align: start;widows: 2;-webkit-text-stroke-width: 0px;word-spacing:0px"><span style="color:#0070C0;background:white">A Versatile Usable Big Data Infrastructure for Process Industry and Its Monitoring Applications</span></a></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;background:white"><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">,” <i>Frontiers of Chemical Engineering: Computational Methods for Chemical Engineering</i>, vol. 3, 2021.</span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-fareast-font-family: &quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast;mso-bidi-font-family: Arial;color:black;mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning: 12.0pt"></span></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l0 level1 lfo1"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;background:white">A. Kychkin and G. Chasparis, “</span><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:#0070C0"><a href="https://ieeexplore.ieee.org/document/10185790" style="box-sizing: border-box; transition: color 0.1s ease-in-out 0s, background-color 0.1s ease-in-out 0s; font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align: start;widows: 2;-webkit-text-stroke-width: 0px;word-spacing:0px"><span style="color:#0070C0;background:white;text-decoration:none;text-underline:none">Automated Cross Channel Temperature Predictions for the PFR Lime Kiln Operating Support</span></a></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;background:white"><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">,” <i>31st Mediterranean Conference on Control and Automation</i>, 2023.</span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt"></span></span></p> <p style="margin:0in;line-height:85%"><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt">&nbsp;</span></p> <p style="margin:0in;line-height:85%"><b><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;; mso-fareast-theme-font:minor-fareast;mso-bidi-font-family:Arial;color:black; mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning:12.0pt">Hierarchical Predictive Modeling and Optimization</span></b></p> <p style="margin:0in;line-height:85%"><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt">&nbsp;</span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;background:white">M. Mayr, S. Luftensteiner, and G. Chasparis, “</span><u><span style="font-size: 10.0pt;line-height:85%;font-family:Roboto;color:#0070C0"><a href="https://www.sciencedirect.com/science/article/pii/S1877050922003544" target="_blank" style="box-sizing: border-box;transition: color 0.1s ease-in-out 0s, background-color 0.1s ease-in-out 0s; font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align: start;widows: 2;-webkit-text-stroke-width: 0px;word-spacing:0px"><span style="color:#0070C0;background:white">Abstracting Process Mining Event Logs from Process-State Data to Monitor Control-Flow of Industrial Processes</span></a></span></u><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;background:white"><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">,” <i>Procedia Computer Science</i>, vol 200, 2022, pp. 1442-1450.</span></span><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt"></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;background:white">G. Chasparis, S. Luftensteiner, and M. Mayr, “</span><u><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:#0070C0"><a href="https://www.sciencedirect.com/science/article/pii/S1877050922003507" target="_blank" style="box-sizing: border-box;transition: color 0.1s ease-in-out 0s, background-color 0.1s ease-in-out 0s; font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align: start;widows: 2;-webkit-text-stroke-width: 0px;word-spacing:0px"><span style="color:#0070C0;background:white">Generalized Input-Output Hidden-Markov-Models for Supervising Industrial Processes</span></a></span></u><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;background:white"><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">,” <i>Procedia Computer Science</i>, vol 200, 2022, pp. 1402-1411.</span></span><span style="font-size:10.0pt;line-height: 85%;font-family:Roboto;mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font: minor-fareast;mso-bidi-font-family:Arial;color:black;mso-themecolor:text1; letter-spacing:-.1pt;mso-font-kerning:12.0pt"></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;background:white">A. Abbas, <strong><span style="font-family:Roboto;font-weight:normal">G. Chasparis</span></strong><span style="font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2; text-align:start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial; text-decoration-style: initial;text-decoration-color: initial;float:none; word-spacing:0px">, J. Kelleher, “</span></span><u><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:#0070C0"><a href="https://link.springer.com/chapter/10.1007/978-3-031-12670-3_12" style="box-sizing: border-box;transition: color 0.1s ease-in-out 0s, background-color 0.1s ease-in-out 0s; font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align: start;widows: 2;-webkit-text-stroke-width: 0px;word-spacing:0px"><span style="color:#0070C0;background:white">Interpretable Input-Output Hidden Markov Model-Based Deep Reinforcement Learning for&nbsp;the&nbsp;Predictive Maintenance of&nbsp;Turbofan Engines</span></a></span></u><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;color:black; mso-themecolor:text1;background:white"><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">,”&nbsp;</span><em style="box-sizing: border-box; font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align: start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial; text-decoration-style: initial;text-decoration-color: initial;word-spacing: 0px"><span style="font-family:Roboto;border:none windowtext 1.0pt;mso-border-alt: none windowtext 0in;padding:0in">Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</span></em><span style="font-variant-ligatures: normal; font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px; text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial; float:none;word-spacing:0px">, 2022, 13428 LNCS, pp. 133–148.</span></span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-fareast-font-family: &quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast;mso-bidi-font-family: Arial;color:black;mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning: 12.0pt"></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"><span style="font-size:10.0pt;line-height:85%;font-family:Symbol;mso-fareast-font-family: Symbol;mso-bidi-font-family:Symbol;color:black;mso-themecolor:text1;letter-spacing: -.1pt;mso-font-kerning:12.0pt"><span style="mso-list:Ignore">·<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:black;mso-themecolor:text1;background:white">A. Abbas, <strong><span style="font-family:Roboto;font-weight:normal">G. Chasparis</span></strong><span style="font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2; text-align:start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial; text-decoration-style: initial;text-decoration-color: initial;float:none; word-spacing:0px">, J. Kelleher, “</span><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:#0070C0;background:white"><a href="https://doi.org/10.1016/j.datak.2023.102240"><span style="color:#0070C0">Hierarchical framework for interpretable and specialized deep reinforcement learning-based predictive maintenance</span></a></span><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:black;mso-themecolor:text1;background: white">,” <i>Data &amp; Knowledge Engineering</i>, vol 149, 2024.</span><span style="font-size:10.0pt;line-height:85%;font-family:Roboto;mso-fareast-font-family: &quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast;mso-bidi-font-family: Arial;color:black;mso-themecolor:text1;letter-spacing:-.1pt;mso-font-kerning: 12.0pt"></span></span></p> <p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:#444444;background:white"><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:#444444;background:white"><br></span></span></p><p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"><span style="font-size:10.0pt;line-height:85%; font-family:Roboto;color:#444444;background:white"><span style="font-size:10.0pt; line-height:85%;font-family:Roboto;color:#444444;background:white"><br></span></span></p><p style="margin-top:0in;margin-right:0in;margin-bottom:0in;margin-left:.5in; text-indent:-.25in;line-height:85%;mso-list:l1 level1 lfo2"> </p><p></p>

UrsaLeo’s Digital Twin: Streaming high-resolution 3D graphics to access all of your data image

UrsaLeo’s Digital Twin: Streaming high-resolution 3D graphics to access all of your data

Manufacturer: UrsaLeo

Industry: Manufacturing

Type: Process Twin

Integration: Digital Twin

Sophistication: Informative Twin

All modern facilities have massive amounts of data associated with them. This can range from CAD of buildings and equipment through documentation, asset information, maintenance records, and real-time sensor data. Accessing all this information through a digital twin improves all aspects of operation.

UrsaLeo utilizes the power of NVIDIA Omniverse, a development platform for building 3D tools and applications, and the NVIDIA Graphics Delivery Network (GDN) to deliver high-resolution, streamed 3D digital twins of any building, facility, or equipment. Multiple 3D sources can be combined into a single image thanks to the power of OpenUSD services, part of the Omniverse platform. The twin is then combined with geospatial data, documents, asset data, real-time sensor data, and analytics information into a single user interface. This means operators, executives, trainees, and maintenance staff have all the information they need, contextually organized and accessible through a web browser on any device. Documents can be retrieved and uploaded, maintenance and asset records retrieved, sensor data examined, and alerts acted on through any compute device.

 

GDN takes advantage of NVIDIA’s global cloud streaming infrastructure to deliver seamless access to digital twins and other high-fidelity 3D interactive experiences using the latest NVIDIA GPUs. Anyone with a web browser can access the twin using GDN, and design changes are effortlessly reflected in production.

 

Omniverse can interface directly with more than 30 3D design tools, allowing many disparate sources to be combined into a single twin. Tools are provided to measure objects on the twin, add screen markups, vary the lighting, and collaborate with multiple users.

 

Use cases of the digital twin include collaboration during the design and construction phase, walkthroughs of interior design, simulation of operation, real-time analytics, tracking goods and people moving through the facility, training, maintenance, and many more.

 

To illustrate how the twin can improve efficiency: imagine an operator sees a real-time alert on an air handler unit. Clicking on the unit retrieves the documentation associated with it along with the metadata, such as manufacturer, unit type, serial number, installation date, and the party responsible for maintenance. The operator can then create a work order directly in the twin and assign it to maintenance staff. They can also run analytics to identify trends and highlight anomalies.


<p><a href="http://www.ursaleo.com/" style="color: rgb(35, 82, 124); --bs-link-color-rgb: var(--bs-link-hover-color-rgb); outline: 0px;" target="_blank">www.ursaleo.com</a> </p><p><a href="https://www.nvidia.com/en-us/omniverse/" target="_blank">www.nvidia.com/en-us/omniverse/</a></p><p><a href="https://www.nvidia.com/en-us/omniverse/solutions/stream-3d-apps/" target="_blank">www.nvidia.com/en-us/omniverse/solutions/stream-3d-apps/</a></p>

SchaltAG Digital Twin for modular production image

SchaltAG Digital Twin for modular production

Manufacturer: Swiss Smart Factory / Switzerland Innovation Park Biel Bienne

Industry: Manufacturing

Type: Product Twin

Integration: Digital Twin

Sophistication: Comprehensive Twin

The first scenario is shown below, which visualizes if a connected flexible module is docked or not on each of the tree docking station. As visible in the illustration below it is visible that the digital twin is able to update itself to the status of the pilot. This helps the user to check the status of the pilot line configuration at any given time.

This digital twin that allows a stakeholder to check if the process is feasible or not. It also verifies the following if the pilot line is setup correctly for the SchaltAG employees and if the upcoming product is feasible on this setup or not. This (virtual) validation process is performed in the virtual world while the pilot line is producing another product at SchaltAG, thus, it support in ramping up the production capabilities of the company. In other words, it helps to reduce the down time of the pilot line (downtime drops significantly) because most of the preparation work will be done in virtual environment thanks to the Digital Twin. This enables the employees to be involved in other tasks while the setup takes place in the background and once the setup instructions are completed the user can go to the production line and work with the real machine.


Overall, during the setup creation, the gathering of data is quite fast, but not in real-time. In other words, the Digital Twin environment has around 0.5s delay with respect to movement of the real physical twin. Still, this process helps the end users to have a powerful and useful monitoring of the data from the module in a fast and reliable manner, but not in absolute real-time, which is fine for our requirements in these processes.

<p><a href="https://dimofac.eu/">Home - DIMOFAC</a><br></p>

VTU - Digital Twin in the Process Industry image

VTU - Digital Twin in the Process Industry

Manufacturer: VTU Engineering

Industry: Pharmaceuticals

Type: Process Twin

Integration: Digital Model

Sophistication: Informative Twin

VTU plans and delivers state-of-the-art process plants. The range of services extends from plant optimization to the overall planning of large projects. In the context of digitization throughout the planning process, there is an increasing focus on the use of digital twins. An example is presented here.

In a specific project, VTU served as the EPCMv general planner (Engineering, Procurement, Construction Management, Validation) from concept design to the start-up of a new plant. In line with Integrated Engineering, which VTU has been implementing for several years, all digital plans generated during the process planning were available in a Common Data Environment (CDE). From these data, a functional digital twin of the process could be created within 3 weeks. Thus, the newly planned process could be digitally represented as a mathematical model months before the physical process existed. This digital twin could be precisely controlled through the process control system, just like the real process. Therefore, interaction with the digital twin was possible even before the plant was operational.

Reduced development and commissioning times

What benefits did the digital plant twin bring? Overall, the total development time of the project was reduced by 10%. Thanks to the early availability of the digital twin, various tasks were advanced, such as operator training, virtual commissioning of the software, and initial software tests based on simulations. Long lead times for hardware components could be optimally utilized, resulting in a 30% reduction in commissioning time.

In the specific project, 25% of all operator training was conducted using the digital twin. As the workflow could be defined early on, changes to the process were easy to accommodate. On the other hand, the digital plant twin also allowed for tests and changes without physical influences, thereby eliminating any risk to plant safety.

Stefan Pauli, Mario Petschenig: So steigen Sie schneller in die Produktion ein. in: Digital Engineering Magazin (2023), 07/2023 S. 32-33.

Rolls-Royce Soars and Digital Twins image

Rolls-Royce Soars and Digital Twins

Manufacturer: Rolls-Royce

Industry: Military Aerospace and Defense

Type: Product Twin

Integration: Digital Twin

Sophistication: Predictive Twin

Rolls-Royce, a global leader in aerospace propulsion systems, has embraced digital twins to revolutionize the design, operation, and maintenance of its aero engines. Digital twins, virtual replicas of physical assets, provide Rolls-Royce engineers with a comprehensive understanding of engine behavior and performance, enabling them to optimize performance, enhance efficiency, and extend engine lifespan.

Digital twins serve as virtual replicas of Rolls-Royce engines, incorporating real-time data from sensors embedded within the engines. This continuous data stream allows Rolls-Royce to monitor the engine's health and performance, enabling proactive maintenance and preventing potential failures. By analyzing historical data and simulating future scenarios, Rolls-Royce can optimize engine operation, extending its lifespan and reducing operational costs.

Intelligent Engines: A Symphony of Technology

Rolls-Royce's Intelligent Engine concept goes beyond mere monitoring; it integrates advanced technologies to enhance engine performance and sustainability. Artificial intelligence (AI) algorithms analyze sensor data, identifying patterns and predicting potential issues before they arise. This predictive maintenance approach minimizes unplanned downtime and ensures aircraft availability.

Real-Time Data for Enhanced Performance

Real-time data from sensors also feeds into adaptive control systems, allowing the engine to adjust its operation in real-time, optimizing performance and fuel efficiency under varying conditions. This dynamic optimization ensures that the engine always operates at its peak, reducing fuel consumption and emissions.

A Holistic Approach to Aviation Excellence

The combination of digital twins and intelligent engines represents a holistic approach to aviation excellence. Rolls-Royce leverages these technologies to deliver a range of benefits, including:

  • Predictive maintenance: Preventing failures and reducing downtime.

  • Performance optimization: Enhancing fuel efficiency and reducing emissions.

  • Improved reliability: Ensuring aircraft availability and operational safety.

  • Personalized maintenance: Tailoring maintenance schedules to individual engine usage.

Rolls-Royce: Shaping the Future of Aviation

Rolls-Royce's commitment to digitalization and innovation is shaping the future of aviation. By harnessing the power of digital twins and intelligent engines, the company is delivering cutting-edge propulsion solutions that are more efficient, sustainable, and reliable. As the aviation industry continues to evolve, Rolls-Royce is poised to remain at the forefront, driven by its commitment to technological advancement.

<p>- <a href="https://www.rolls-royce.com/media/our-stories/discover/2019/how-digital-twin-technology-can-enhance-aviation.aspx" target="_blank">https://www.rolls-royce.com/media/our-stories/discover/2019/how-digital-twin-technology-can-enhance-aviation.aspx</a></p><p>- <a href="https://www.aerospacemanufacturinganddesign.com/article/the-intelligentengine/" target="_blank">https://www.aerospacemanufacturinganddesign.com/article/the-intelligentengine/</a></p><p>- <a href="https://diginomica.com/how-rolls-royce-improving-engine-sustainability-real-time-data-and-digital-twins" target="_blank">https://diginomica.com/how-rolls-royce-improving-engine-sustainability-real-time-data-and-digital-twins</a></p><p>- <a href="https://www.cio.com/article/188765/rolls-royce-turns-to-digital-twins-to-improve-jet-engine-efficiency.html" target="_blank">https://www.cio.com/article/188765/rolls-royce-turns-to-digital-twins-to-improve-jet-engine-efficiency.html</a></p>